Synthetic Energy Data Generation Using Time Variant Generative Adversarial Network

نویسندگان

چکیده

Energy consumption data is being used for improving the energy efficiency and minimizing cost. However, obtaining has two major challenges: (i) collection very expensive, time-consuming, (ii) security privacy concern of users which can be revealed from actual data. In this research, we have addressed these challenges by using generative adversarial networks generating profile. We successfully generated synthetic similar to real On basis recent research conducted on TimeGAN, implemented a framework generation that could useful in analysis create business solutions. The real-world dataset, consisting year 2020 Australian states Victoria, New South Wales, Australia, Queensland Tasmania. results implementation evaluated various performance measures are showcased visualizations along with Principal Component Analysis (PCA) t-distributed stochastic neighbor embedding (TSNE) plots. Overall, experimental show Synthetic proposed possess characteristics dataset high comparison accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-based Generative Adversarial Network

We introduce the “Energy-based Generative Adversarial Network” model (EBGAN) which views the discriminator as an energy function that associates low energies with the regions near the data manifold and higher energies with other regions. Similar to the probabilistic GANs, a generator is trained to produce contrastive samples with minimal energies, while the discriminator is trained to assign hi...

متن کامل

Adversarial Examples Generation and Defense Based on Generative Adversarial Network

We propose a novel generative adversarial network to generate and defend adversarial examples for deep neural networks (DNN). The adversarial stability of a network D is improved by training alternatively with an additional network G. Our experiment is carried out on MNIST, and the adversarial examples are generated in an efficient way compared with wildly-used gradient based methods. After tra...

متن کامل

Text Generation using Generative Adversarial Training

Generative models reduce the need of acquiring laborious labeling for the dataset. Text generation techniques can be applied for improving language models, machine translation, summarization, and captioning. This project experiments on different recurrent neural network models to build generative adversarial networks for generating texts from noise. The trained generator is capable of producing...

متن کامل

Wasserstein Generative Adversarial Network

Recent advances in deep generative models give us new perspective on modeling highdimensional, nonlinear data distributions. Especially the GAN training can successfully produce sharp, realistic images. However, GAN sidesteps the use of traditional maximum likelihood learning and instead adopts an two-player game approach. This new training behaves very differently compared to ML learning. Ther...

متن کامل

Controllable Generative Adversarial Network

Although it is recently introduced, in last few years, generative adversarial network (GAN) has been shown many promising results to generate realistic samples. However, it is hardly able to control generated samples since input variables for a generator are from a random distribution. Some attempts have been made to control generated samples from GAN, but they have shown moderate results. Furt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2022

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics11030355